Closing Today:
2.2

Closing Monday: 2.3
Closing Wed: $\quad 2.5-6$
Closing next Fri: $\quad 2.7$
My extra office hours today
1:15-3:00pm in
Communications B-006 (room next to MSC)

Entry Task: Find the limits

1. $\lim _{h \rightarrow 0}\left[\frac{(5+h)^{2}-5}{h}\right]$
2. $\lim _{x \rightarrow 2^{-}}\left[\frac{5 x+1}{x^{2}-4}\right]$
3. $\lim _{x \rightarrow 16}\left[\frac{x-16}{\sqrt{x}-4}\right]$

2.5 Continuity

A function, $f(x)$, is continuous at $\mathbf{x}=\mathbf{a}$
if

$$
\lim _{x \rightarrow a} f(x)=f(a)
$$

this implies three things

1. $f(a)$ is defined,
2. $\lim _{x \rightarrow a} f(x)$ exists and is finite, and
3. they are the same!

Continuous from the left

$$
\lim _{x \rightarrow a^{-}} f(x)=f(a)
$$

Continuous from the right

$$
\lim _{x \rightarrow a^{+}} f(x)=f(a)
$$

Casually, we might say a function is continuous at $x=a$ if you can draw the graph across $x=a$ point without picking up your pencil.

The "standard" precalculus functions are continuous everywhere they are defined:
polynomials \rightarrow defined everywhere $\sin (x), \cos (x) \rightarrow$ defined everywhere $\mathrm{e}^{\mathrm{x}} \quad \rightarrow$ defined everywhere odd roots $\quad \rightarrow$ defined everywhere $\tan ^{-1}(x) \quad \rightarrow$ defined everywhere Rational Functions \rightarrow for denom $\neq 0$
Even Roots $\quad \rightarrow$ under radical ≥ 0
$\ln (x) \quad \rightarrow$ for $x>0$
$\tan (x) \quad \rightarrow$ not at $x= \pm k \pi / 2$
$\sin ^{-1}(x), \cos ^{-1}(x) \quad \rightarrow$ for $-1 \leq x \leq 1$
All the functions above are continuous everywhere accept at the noted exceptions.

Example:

$$
g(x)=\left\{\begin{array}{cc}
8-x^{2} & , \text { if } x<0 \\
2 & , \text { if } 0 \leq x<5 \\
0 & , \text { if } x=5 \\
7-x & \text {, if } x>5
\end{array}\right.
$$

Does $\mathrm{g}(\mathrm{x})$ have any discontinuities?
If so, where?

Example:

$$
h(x)=\left\{\begin{array}{cc}
a x^{2}+6 & , \text { if } x<1 \\
b & , \text { if } x=1 \\
\frac{x+49}{x+a} & , \text { if } x>1
\end{array}\right.
$$

Find the values of a and b that will make $h(x)$ continuous everywhere.
$h(x)$

Theorem:

If $f(x)$ is continuous at $x=b$, and

$$
\lim _{x \rightarrow a} g(x)=b
$$

then

$$
\lim _{x \rightarrow a} f(g(x))=f(b)
$$

Example:

Find

$$
\lim _{x \rightarrow 9} \ln \left(\frac{\sqrt{x}-3}{x-9}\right)
$$

2.6 Limits "at" Infinity

(Horizontal Asymptotes)

Goal: Study "long term" behavior.

When we write

$$
\lim _{x \rightarrow \infty} f(x)=L
$$

we say "the limit of $f(x)$, as x goes to infinity is L ", and we mean
as x takes on larger and larger positive numbers, $y=f(x)$ takes on values closer and closer to L.
Similarly,

$$
\lim _{x \rightarrow-\infty} f(x)=L
$$

we say "the limit of $f(x)$, as x goes to negative infinity is L ".

Some important limits to know:

For any positive number n,

1. $\lim _{x \rightarrow \infty} x^{-n}=\lim _{x \rightarrow \infty} \frac{1}{x^{n}}=0$.

$$
\lim _{x \rightarrow-\infty} x^{-n}=\lim _{x \rightarrow-\infty} \frac{1}{x^{n}}=0
$$

(if defined)
2. $\lim _{x \rightarrow \infty} e^{x}=\infty$ and $\lim _{x \rightarrow \infty} e^{-x}=0$. $\lim _{x \rightarrow-\infty} e^{x}=0$ and $\lim _{x \rightarrow-\infty} e^{-x}=\infty$
3. $\lim _{x \rightarrow \infty} \ln (x)=\infty$
4. $\lim _{x \rightarrow \infty} \tan ^{-1}(x)=\frac{\pi}{2}$,
$\lim _{x \rightarrow-\infty} \tan ^{-1}(x)=-\frac{\pi}{2}$

Strategies to compute

$\lim _{x \rightarrow \infty} f(x)$

1. Is it a known limit?
2. Rewrite it in terms of known limits:

Strategy 1: Multiply top/bottom by $\frac{1}{x^{a}}$, where a is the largest power.

Strategy 2: Multiply top/bottom by $\mathrm{e}^{-r \mathrm{x}}$.

Strategy 3: Multiply by conjugate.
Strategy 4: Combine Fractions.
Strategy 5: Change variable

