Closing Today: 2.2 Closing Monday: 2.3 Closing Wed: 2.5-6 Closing next Fri: 2.7 *My extra office hours today* 1:15-3:00pm in Communications B-006 (room next to MSC)

Entry Task: Find the limits 1. $\lim_{h \to 0} \left[\frac{(5+h)^2 - 5}{h} \right]$

2.
$$\lim_{x \to 2^{-}} \left[\frac{5x+1}{x^2-4} \right]$$

3.
$$\lim_{x \to 16} \left[\frac{x-16}{\sqrt{x}-4} \right]$$

2.5 Continuity

A function, f(x), is **continuous at x = a** if

$$\lim_{x \to a} f(x) = f(a)$$

this implies three things

- 1. f(a) is defined,
- 2. $\lim_{x \to a} f(x)$ exists and is finite, and
- 3. they are the same!

Continuous from the left

 $\lim_{x \to a^-} f(x) = f(a)$

Continuous from the right

 $\lim_{x \to a^+} f(x) = f(a)$

Casually, we might say a function is continuous at x = a if you can draw the graph across x = a point without picking up your pencil.

The "standard" precalculus functions are **continuous everywhere they are defined**:

polynomials	ightarrow defined everywhere
sin(x), cos(x)	ightarrow defined everywhere
e ^x	ightarrow defined everywhere
odd roots	ightarrow defined everywhere
tan ⁻¹ (x)	ightarrow defined everywhere
Rational Functions→ for denom ≠ 0	
Even Roots	\rightarrow under radical \geq 0
ln(x)	\rightarrow for x > 0
tan(x)	\rightarrow not at x = ±k $\pi/2$
$\sin^{-1}(x)$, $\cos^{-1}(x)$	$\Rightarrow \text{ for } -1 \le x \le 1$

All the functions above are continuous everywhere accept at the noted exceptions. Example:

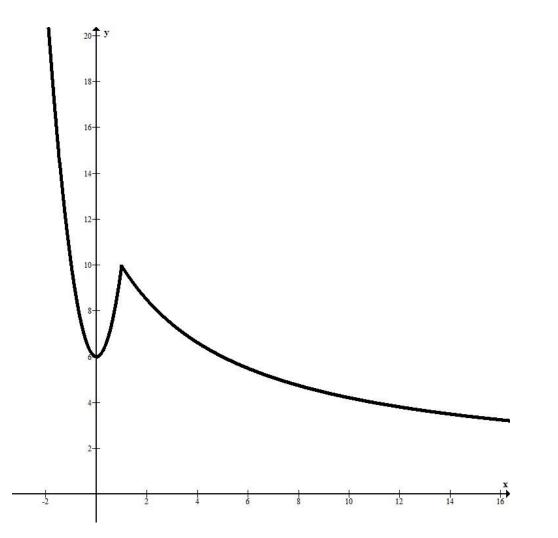
$$g(x) = \begin{cases} 8 - x^2 & \text{, if } x < 0; \\ 2 & \text{, if } 0 \le x < 5; \\ 0 & \text{, if } x = 5; \\ 7 - x & \text{, if } x > 5. \end{cases}$$

Does g(x) have any discontinuities? If so, where? Example:

$$h(x) = \begin{cases} ax^2 + 6 & \text{, if } x < 1; \\ b & \text{, if } x = 1; \\ \frac{x + 49}{x + a} & \text{, if } x > 1. \end{cases}$$

Find the values of a and b that will make h(x) continuous *everywhere*.

h(x)



Theorem:

If f(x) is continuous at x = b, and $\lim_{x \to a} g(x) = b$

then

$$\lim_{x\to a} f(g(x)) = f(b).$$

Example:

Find

$$\lim_{x \to 9} \ln\left(\frac{\sqrt{x}-3}{x-9}\right)$$

2.6 Limits "at" Infinity (Horizontal Asymptotes)

Goal: Study "long term" behavior.

When we write

$$\lim_{x\to\infty}f(x)=L$$

we say "the limit of f(x), as x goes to infinity is L", and we mean

as x takes on larger and larger positive numbers,

y = f(x) takes on values closer and closer to L.

Similarly,

$$\lim_{x \to -\infty} f(x) = L$$

we say "the limit of f(x), as x goes to negative infinity is L".

Some important limits to know:

For any <u>positive</u> number n,

1.
$$\lim_{x \to \infty} x^{-n} = \lim_{x \to \infty} \frac{1}{x^n} = 0.$$
$$\lim_{x \to -\infty} x^{-n} = \lim_{x \to -\infty} \frac{1}{x^n} = 0.$$
(if defined)

2.
$$\lim_{x \to \infty} e^x = \infty$$
 and $\lim_{x \to \infty} e^{-x} = 0$.
 $\lim_{x \to -\infty} e^x = 0$ and $\lim_{x \to -\infty} e^{-x} = \infty$

$$3.\lim_{x\to\infty}\ln(x)=\infty$$

4.
$$\lim_{x \to \infty} \tan^{-1}(x) = \frac{\pi}{2}$$
,
 $\lim_{x \to -\infty} \tan^{-1}(x) = -\frac{\pi}{2}$

Strategies to compute $\lim_{x\to\infty} f(x)$

1. Is it a known limit?

2. Rewrite it in terms of known limits:

Strategy 1: Multiply top/bottom by $\frac{1}{x^a}$, where *a* is the largest power.

Strategy 2: Multiply top/bottom by e^{-rx}.

Strategy 3: Multiply by conjugate.

Strategy 4: Combine Fractions.

Strategy 5: Change variable